Resources

  • Email: ekupers [at] stanford [dot] edu
  • Link to CV
  • LinkedIn  
  • Google Scholar  
  • NIH MyBibliography
  • Twitter  
  • GitHub  
  • Code for fMRI
    • Spatiotemporal population receptive field (pRF) model: Simulator and solver & Core toolbox
    • A framework to estimate a voxel's spatiotemporal pRF (in degrees visual angle and milliseconds). Model finds the best fitting spatiotemporal pRF parameters to predict the BOLD response given a stimulus sequence.
    Code for MEG/EEG
    • Noisepool-PCA: Core toolbox
    • A general purpose suite to denoise EEG/MEG/ECoG data. The denoising suite selects a "noise pool" of sensors, applies PCA to the noise timeseries, to then project out several noise PC's from sensor data.
    • MEG forward model: Retinotopy implementation & Large-scale neural synchrony implementation
    • A framework to predict MEG sensor responses from the stimulus, leveraging population receptive field (pRF) models on the cortex. PRF models are estimated independently, in a separate fMRI experiment or anatomical template. These pRFs are used to first predict the stimulus response on the cortex, to then simulate how the cortical responses propagate to the sensors using a biophysical forward model.